主管单位:中华人民共和国
国家卫生健康委员会
总编辑:杨秋
编辑部主任:吴翔宇
邮发代号:80-528
定价:28.00元
全年:336.00元
Email:zgyy8888@163.com
电话(传真):010-64428528;
010-64456116(总编室)
英文作者:Yang Zhanmei Tang Zhiyin Liu Hongtao
英文单位:Department of Anesthesiology Shengjing Hospital of China Medical University Shenyang 110000 China
关键词:人工智能;麻醉;气道管理;预测模型;机器学习;深度学习
英文关键词:
气道管理是麻醉中重要的环节,难以预料的困难气道可以导致严重的后果,如低氧血症、脑死亡等,因此麻醉前的气道评估尤为重要。机器学习和深度学习在建立困难气道预测模型方面有着比传统方法(如改良马氏分级、甲颏距离等)更加优越的性能。机器学习算法可以敏锐发现变量之间的非线性关系,深度学习算法,特别是卷积神经网络及其变体,通过自动分析多模态数据,显著提高预测准确性和效率。本文重点介绍机器学习与深度学习技术在困难气道评估方面的应用,以期提高麻醉的安全性。
Airway management is an important part of anesthesia. Unpredictable difficult airway can lead to serious consequences, such as hypoxemia and brain death, so airway assessment before anesthesia is particularly important. Machine learning and deep learning have better performance than traditional methods (such as modified Maholobian classification, thyromental distance, etc.) in establishing difficult airway prediction models. Machine learning algorithms can keenly find nonlinear relationships between variables. Deep learning algorithms, especially convolutional neural networks and their variants, have significantly improved prediction accuracy and efficiency by automatically analyzing multimodal data. This article focuses on the application of machine learning and deep learning technology in difficult airway assessment, in order to improve the safety of anesthesia.
copyright 《中国医药》杂志编辑部
地址:北京市朝阳区安贞路2号首都医科大学附属北京安贞医院北楼二层
电话:010-64456116 传真:010-64428528 邮编:100029 Email: zgyy8888@163.com
网址:www.chinamedicinej.com 京ICP备2020043099号-3
当您在使用本网站投稿遇到困难时,请直接将稿件投送到编辑部邮箱zgyy8888@163.com。